4,558,413

1
SOFTWARE VERSION MANAGEMENT SYSTEM

BACKGROUND OF THE INVENTION

This invention relates to software version manage-
ment system and method for handling and maintaining
software, e.g. software updating uniformily across the
system, particularly in a large software development
environment having a group of users or programmers.
The system is also referred to as the “System Mo-
deller”.

Programs consisting of a large number of modules
need to be managed. When the number of modules
making up a software environment and system exceeds
some small, manageable set, a programmer cannot be
sure that every new version of each module in his pro-
gram will be handled correctly. After each version is
created, it must be compiled and loaded. In a distributed
computing environment, files containing the source text
of a module can be stored in many places in a distributed
system. The programmer may have to save it some-
where so others may use it. Without some automatic
tool to help, the programmer cannot be sure that ver-
sions of software being transferred to another user or
programmer are the versions intended to be used.

A programmer unfamiliar with the composition of
the program is more likely to make mistakes when a
simple change is made. Giving this new programmer a
list of the files involved is not sufficient, since he needs
to know where they are stored and which versions are
needed. A tool to verify a list of files, locations and
correct versions would help to allow the program to be
built correctly and accurately. A program can be so
large that simply verifying a description is not suffi-
cient, since the description of the program is so large
that it is impractical to maintain it by hand.

The confusion of a single programmer becomes much
worse, and the cost of mistakes much higher, when
many programmers collaborate on a software project.
In muiti-person projects, changes to one part of a soft-
ware system can have far-reaching effects. There is
often confusion about the number of modules affected
and how to rebuild affected pieces. For example, user-
visible changes to heavily-used parts of an operating
system are made very seldom and only at great cost,
since other programs that depend on the old version of
the operating system have to be changed to use the
newer version. To change these programs, the “cor-
rect” versions of each have to be found, each has to be
modified, tested, and the new versions installed with the
new operating system. Changes of this type often have
to be made quickly because the new system may be
useless until all components have been converted. Mem-
bers or users of large software projects are unlikely to
make such changes without some automatic support.

The software management problems faced by a pro-
grammer when he is developing software are made
worse by the size of the software, the number of refer-
ences to modules that must agree in version, and the
need for explicit file movement between computers.
For example, a programming environment and system
used at the Palo Alto Research Center of Xerox Corpo-
ration at Palo Alto, Calif,, called “Cedar” now has
approximately 447,000 lines of Cedar code, and approx-
imately 2000 source and 2000 object files. Almost all
binary or object files refer to other binary or object files
by explicit version stamp. A program will not run until
all references to an binary or object file refer to the

20

25

30

35

40

45

55

65

2

same version of that file. Cedar is too large to store all
Cedar software on the file system of each programmer’s
machine, so each Cedar programmer has to explicitly
retrieve the versions he needs to run his system from
remote storage facilities or file servers.

Thus, the problem falls in the realm of *“Program-
ming-the-Large” wherein the unit of discourses the
software module, instead of ‘“Programming-in-the-
Small”, where units include scalor variables, statements,
expressions and the like. See the Article of Frank
DeRemer and H. Kron, “Programming-in-the-Large
versus Programming in the small”, IEEE Transactions
on Software Engineering, Vol. 2(2), pp. 80-86, June 1976.

To provide solutions solving these problems over-
viewed above, consider the following:

1. Languages are provided in which the user can
describe his system.

2. Tools are provided for the individual programmer
that automate management of versions of his programs.
These tools are used to acquire the desired versions of
files, automatically recompile and load aprogram, save
new versions of software for others to use, and provide
useful information for other program analysis tools such
as cross-reference programs.

3. In a large programming project, software is
grouped together as a release when the versions are all
compatible and the programs in the release run cor-
rectly. The languages and tools for the individual pro-
grammer are extended to include information about
cross-package dependencies. The release process is
designed so production of release does not lower the
productivity of programmers while the release is occur-
ring.

To accomplish the foregoing, one must identify the
kinds of information that must be maintained to describe
the software systems being developed. The information
needed can be broken down into three categories:

1. File Information: For each version of a system, the
versions of each file in the system must be specified.
There must be a way of locating a copy of each version
in a distributed environment. Because the software is
always changing, the file information must be change-
able to reflect new versions as they are created.

2. Compilation Information: All files needed to com-
pile the system must be identified. It must be possible to
compute which files need to be translated or compiled
or loaded and which are already in machine runnable
format. This is called “Dependency Analysis.” The
compilation information must also include other param-
eters of compilation such as compiler switches or flags
that affect the operation of the compiler when it is run.

3. Interface Information: In languages that require
explicit delineation of interconnections between mod-
ules (e.g. Mesa, Ada), there must be means to express
these interconnections.

There has been little research in version control and
automatic software management. Of that, almost none
has built on other research in the field. Despite good
reasons for it, e.g. the many differences between pro-
gram environments, and the fact that programming
environments ususally emphasize one or two program-
ming languages, so the management systems available
are often closely related to those programming lan-
guages, this fact reinforces the singularity of this re-
search. The following is brief review of previous work
in this area.

(1) Make Program



