5,694,608

37

In addition to the propagation of data modifications,
design changes also propagate. If a user changes the design
of a View, such as specifying a new selection criterion, that
View is updated as well as all views dependent upon that
View. Again, this is all done automatically, so that the user
is unaware of the process.

Contrast this approach to that of a dynaset or “live”
answer table. Although a dynaset includes storage having
pointers to corresponding records in the base table, the
dynaset is not updated automatically when a change is made
to the base table. Moreover, the dynaset approach is ill-
suited for use as a live view. In particular, that approach
would require re-executing the query for each modification
to the base table. The resource and time requirement for
re-executing the query makes this approach impractical. The
incremental maintenance approach of the present invention,
in contrast, handily solves the problem of providing a live
view, yet does not entail resource-impractical operations
(e.g., re-executing queries for each modification).

FIG. 19 is a flowchart 1900 illustrating the method of the
present invention for incremental maintenance of views. At
step 1901, a user modification occurs, such as the user
changing data in a field of a particular record. At step 1902,
the method will follow a particular branch of logic, based on
whether the user modification was an “Insert,” “Delete,” or
“Modify” operation. The remaining steps of the method will
be illustrated by following the “Modify” case arm, which
includes elements of both “Insert” and “Delete.”

The document which was modified has a list of views
(Doc List) which are dependent on it. These dependents are
notified at step 1903. Step 1904 illustrates notification of a
particular view. Here, the View is notified what operation
type occurred (e.g., Insert, Delete, or Modify), as well as
identification (e.g., key and/or record number) of the
affected record.

At step 1905, the method checks whether the modified
record still satisfies the View constraints. If “Yes” at this
step, then at step 1906 the method loops back to step 1904
for processing of other remaining views; if no other views
remain at this point, the method is done. In other words at
step 1905, if the record still satisfies the View constraint then
that particular View need not be changed (other than refresh-
ing the particular data value which has changed). If, on the
other hand, the record does not still satisfy the View con-
straint at step 1905, then the method proceeds to step 1907
where the View (which itself is stored as a tree) deletes the
pointer to the record, thereby removing it from the View.
Thus, step 1907 leads to deletion of the entry in the View
(i.e., B-tree pointer) which corresponds to the record. At the
completion of this step, the method will loop back to 1904
for any other remaining views, or terminate in the case of no
remaining views.

Consider a user modification which keeps a particular
record in a View yet changes the associated record geometry,
such as an operation where the user adds a substantial
amount of text to a text field of a particular record. Recall
that the View stores in its B-tree the geometry associated
with the record. If this geometry is modified (e.g., record
grows larger), the B-tree is updated with the new geometry.
More particularly, the path which leads to this particular
tecord is recalculated using the new geometry for the record.
In a corresponding manner, the stored geometry at each level
in the B-free is updated to reflect the change. Since only the
path for the record is refreshed, the process is particularly
efficient—there is no need to globally recalculate the effect
on the View.

In a like manner, if a record is inserted or deleted, the
geometry along the path associated with the record is
refreshed accordingly. Again, the operation is particularly
efficient, since only a single path through the tree need be
traversed.

10

15

20

25

30

35

45

50

55

65

38

While the invention is described in some detail with
specific reference to a single preferred embodiment and
certain alternatives, there is no intent to limit the invention
to that particular embodiment or those specific alternatives.
Thus, the true scope of the present invention is not limited
to any one of the foregoing exemplary embodiments but is
instead defined by the appended claims.

What is claimed is:

1. In a computer system having a database storing a
plurality of data records, a method for creating a “live”
report of said database, the method comprising:

(a) for each data record, storing with the database infor-
mation describing record geometry required for pre-
senting each said data record in the report;

(b) receiving a request for displaying a certain page of the
report;

(c) converting said request for displaying a certain page of
the report into a request for displaying a portion of the
report located at a certain distance from one end of the
report wherein said certain distance is computed from:
(page number for said certain page)x(distance of print-

able area of each page);

(d) determining from said stored record geometries which
particular data records fall on said certain page; and

(e) presenting the report to a user by rendering on a
display device said particular data records determined
in step (c) to fall on said certain page.

2. The method of claim 1, wherein said record geometry
comprises volume required for displaying a particular record
in the report.

3. The method of claim 1, wherein said record geometry
comprises a height required for displaying a particular
record in the report.

4. The method of claim 1, wherein step (a) includes:

storing a B-tree with said database, said B-tree having leaf
nodes pointing to particular database records in the
database, and wherein each node in the B-tree stores an
accumulated record geometry for records of nodes
beneath it.

5. The method of claim 4, wherein each node in the B-tree
also stores an accumulated record count for records of nodes
beneath it.

6. The method of claim 4, wherein step (c) includes:

determining which record lies at said certain page by:
(i) traversing said B-tree for accumulating record vol-
umes stored at nodes of the B-tree, and
(ii) upon accumulating sufficient record volumes which
at least equal a distance to said certain page, reading
from the B-tree the record number pointed to by the
B-tree at that accumulated volume.
7. The method of claim 6, wherein substep (i) includes:
starting from a root node of the B-tree, traversing nodes
of the B-tree until accumulated record volumes stored
by nodes which have been traversed meet or exceed a
volume required to reach said certain page of the report.
8. The method of claim 1, wherein no data record is
allowed to straddle a page boundary of the report.
9. The method of claim 1, further comprising:
receiving user input for modifying a particular data
record; and
in response to said user input, updating the information
describing record geometry required for presenting said
particular data record.
10. The method of claim 9, further comprising:
re-determining from the updated stored record geometries
which particular data records fall on said certain page;
and



