5,694,608

1

NON-MODAL DATABASE SYSTEM WTH
METHODS FOR INCREMENTAL
MAINTENANCE OF LIVE REPORTS

RELATED APPLICATIONS

The present application is related to co-pending applica-
tion Ser. No. 08/379,226, filed on Jan. 27, 1995 and now
pending.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

BACKGROUND OF THE INVENTION

The present invention relates generally to information
processing environments and, more particularly, to end-user
data processing systems, such as a PC Database Manage-
ment System (PC DBMS).

Computers are a powerful tool for the acquisition and
processing of information. Computerized databases can be
regarded as a kind of electronic filing cabinet or repository
for collecting computerized data files; they are particularly
adept at processing vast amounts of information quickly. As
such, these systems serve to maintain information in data-
base files or tables and make that information available on
demand.

In 1970, Dr. E. F. Codd invented the “relational model”,
a prescription for how a DBMS should operate. The rela-
tional model provides a foundation for representing and
manipulating data, that is, a way of looking at data. The
model includes three basic components: structure, integrity,
and manipulation. Each will be briefly described.

The first of these, structure, is how data should be
presented to users. A database management system is
defined as “relational” when it is able to support a relational
view of data. This means that data which a user can access
and the operators which the user can use to operate upon that
data are themselves relational. Data are organized as rela-
tions in a mathematical sense, with operators existing to
accept relations as input and produce relations as output.
Relations are perhaps best interpreted by users as tables,
composed of rows (tuples) and columns (attributes).

Ideally, data in a relational system is perceived by users
as tables and nothing but tables. This precludes the user from
seeing explicit connections or links between tables, or
having to traverse between tables on the basis of such links.
It also precludes user-visible indexes on fields and, in fact,
precludes users from seeing anything that smacks of the
physical storage implementation. Thus, tables are a logical
abstraction of what is physically stored.

The integrity aspect, on the other hand, dictates that every
relation (i.e., table) should have a unique, primary key to
identify table entries or rows. The integrity of the data for the
user is of course crucial. If accuracy and consistency of the
data cannot be achieved, then the data may not be relied
upon for decision-making purposes.

Data manipulation, the last component, may be thought of
as cut-and-paste operators for tables. Data manipulation is of
course the purpose for which databases exist in the first
place. The superiority of manipulating tables relationally

10

20

25

30

35

45

55

60

65

2

(i.e., as a whole, or sets of rows) is substantial. Users can
combine data in various tables logically by matching values
in common columns, without having to specify any internal
details or the order in which tables are accessed; this
provides users with a conceptual view of the database that is
removed from the hardware level. Non-relational DBMSs,
in contrast, require complex programming skills that form
an inherently unreliable means to interact with databases.

The general construction and operation of a database
management system is known in the art. See e.g., Date, C.,
An Introduction to Database Systems, Volume I and II,
Addison Wesley, 1990; the disclosures of which are hereby
incorporated by reference.

Today, relational systems are everywhere—commonly
seen operating in corporate, government, academic settings,
and other shared environments. A typical instaltation will
employ one of the popular UNIX-based RDBMS running on
a minicomputer. By submitting queries to the DBMS from
a remote terminal (e.g., using a SQL “query editor”), users
are often able to handle many of their own data processing
needs directly. Thus, relational technology is not only jast
another way to build a database system, but it also offers a
set of underlying principles that provide very direct practical
benefits to the user.

The strong theoretical underpinnings of relational systems
which account for their superior design over prior non-
relational systems have also created some unexpected prob-
lems. With the ever-increasing trend towards “down-sizing,”
more and more data processing tasks are being moved off
mainframes and minicomputers and onto desktop PCs, often
operating in a Local Area Network (LAN). Although rela-
tional systems are easier for database-savvy users to use
(e.g., for querying), they are by no means easy for untrained
users. And with the movement of data processing chores to
desktop PCs, ordinary PC users are nevertheless often faced
with the responsibility of designing and implementing a
database system, one having the reliability and integrity
typically associated with a relational system.

Consider the following issues attendant to setting up a
relational database management system (RDBMS). Tables
in a relational system are not just any tables but are, instead,
special “disciplined” tables. Relational systems require, for
instance, that tables not store duplicates (so that each row
may be uniquely identified by one or more column values).
Thus, relations or “R-tables” are subject to particular
constraints, such as “first normal form.” As another
example, to preserve simplicity and take advantage of rela-
tional operations, database tables should not contain “repeat-
ing groups”—that is, multi-valued columns. Such multi-
valued columns remove table resemblance to relations and
thus prevent tables from taking advantage of the latter’s
mathematical properties. Instead, relational tables should
contain only single-value cells or “atomic” data values. Thus
while relational tables are simple and flexible in theory, they
nevertheless entail rigorous constraints which must be
obeyed to implement them in practice.

‘While trained database administrators have the expertise
to tackle such issues, ordinary PC users for the most part
have received no formal data processing education. They
cannot be expected to be familiar with such seemingly
esoteric concepts as “joins,” “one-to-many relations,” “for-
eign keys,” or any of the other myriad of issues which must
be considered when applying the relational approach to
database management.

All told, relational database products have over time
become more and more advanced. And technical advances



