6,080,207

7

(e.g., T1 line, etc.). In further embodiments, the image server
40 may be connected to the Internet using a cable modem or
satellite Internet connectivity (as illustrated by transmitter
54).

In yet another illustrative embodiment, the image server
40 is coupled to a management information system (MIS) 56
via interface 63. Management Information Systems may be
used to support the infrastructure of businesses and organi-
zations wherein such systems are well known to one skilled
in the art.

In referring to FIG. 2 a logic flow for creating a disk
image of a desired software configuration is illustrated.
Block 200 is the start of the logic flow process, which
represents receipt of the customer’s order. Block 200 gen-
erates the Bill of Materials (BOM).

Receipt of the bill of materials is represented by block
204. The image builder 20 starts with the top record and
calculates a configuration identification (ConFig ID) of all
the entries. In block 208, the image builder 20 groups like
orders together. Grouping like orders together allows for
increased efficiency due to the commonality between orders.

In block 212, the image builder 20 compares the configu-
ration IDs to the configuration history. If the configuration
ID corresponds to a previously configured image, then the
image builder 20 looks at whether the image is in a storage
device 30, as illustrated in FIG. 1. If the image is found in
the storage device 30, then block 224 flags the configuration
as ready for delivery and notifies an operator of the com-
puterized network 10 that a desired image is ready.
Otherwise, if the image is not found in the storage device 30,
the image is created by the image builder 20 according to
block 216 as a fresh build. As part of the fresh build process,
block 230 requires the image builder 20 to process the bill
of materials to determine the parameters for building an
image according to the desired software configuration and
ensure that they are compatible with the customer’s
hardware, software and special requirements. The final
result or output from block 230 is an image or “digital
picture” of the desired software configuration according to
the bill of materials.

FIG. 3 illustrates an architecture of a disk image 280 as
created by the image builder 20. The image builder 20 builds
the image 280 in software according to a desired software
configuration and delivers that image to a storage device 30.
Sections of the disk image 280 are discussed in the order in
which they are presented in FIG. 3. One skilled in the art will
readily realize other embodiments of an image architecture.

Section 300 contains BIOS flash properties. The next two
sections, sections 302 and 304, contain the main operating
system and the main applications’ program code or instruc-
tions. Hardware characteristics of the computing system
receiving the disk image 280 are addressed by section 306
dealing with the CMOS settings, section 308 includes the
main BIOS instructions, section 310 supports LOC infor-
mation and section 312 supports desktop parameters for the
main operating system.

Section 314 supports information including, but not lim-
ited to the following: operating system registers, initializa-
tion information and configurations files. Section 316
includes test information. Similar to section 314, section 318
includes, but is not limited to the following: application
system registers, initialization information and configura-
tions files. The last two sections contain an identification of
the specific image itself 320, and the last section contains an
identification of the customer 322. The identification num-
bers allow for future reference of the created image, which

10

15

25

30

40

45

50

55

60

65

8

is helpful for trouble shooting problems in the software
configuration and in also adding delta images to the previ-
ously delivered image in order to upgrade existing applica-
tions.

FIG. 4 illustrates an exemplary embodiment of an iden-
tification scheme 380 for a disk image structure. The image
identification is a tree structure with a configuration identi-
fication number. Also included in the tree structure are
underlying identification numbers corresponding to main
files and underlying identification numbers corresponding to
edited dynamic files (EDF).

More specifically, the identification scheme 380 includes
a configuration number 380 identifying what the desired
image is built from. It is the foundation from which the
image builder 20 works from in creating the desired image.
Once the configuration ID 380 is identified, then the main
files corresponding to the operating system 402, e.g., Win-
dows 95, and the desired application 404 are layered on top
of the configuration ID 400 basic files. Edited dynamic files
corresponding to registry settings 406, operating system
initialization files 408, application EDF files 410.

An image build software delivery process has been
described. The process creates an image of a customer’s
order in software before placing the image on a hard drive
or other storage means for the customer. Once an image has
been created, changes or deltas to the baseline image can
easily be made without having to redefine the baseline.
Adding a delta image to the baseline image allows the
desired image to be achieved. This method provides levels
of granularity wherein incremental changes can be made to
a system without having to perform major work by redefin-
ing the baseline. This allows for easy upgrades and allows
technical support to function efficiently.

Although specific embodiments have been illustrated and
described herein, it will be appreciated by those skilled in
the art that any arrangement which is calculated to achieve
the same purpose may be substituted for the specific
embodiment of the present invention. Therefore, it is mani-
festly intended that this invention be limited only by the
following claims and equivalents.

What is claimed is:

1. A method of building a custom software configuration
comprising:

receiving a desired software configuration;

surveying a plurality of images of preexisting software

configurations and selecting a baseline software con-
figuration corresponding to the desired software con-
figuration;

comparing an image of the baseline software configura-

tion with the desired software configuration; and
generating an image of a set of changes based on the
comparison, the image of a set of chances correspond-
ing to the difference between the baseline software
configuration and the desired software configuration.

2. The method of claim 1 further comprising broadcasting
the image of the set of changes.

3. The method of claim 1 further comprising incorporat-
ing the image of the set of changes with the image of the
baseline configuration to generate an image of a custom
software configuration.

4. The method of claim 3 further comprising broadcasting
the image of the custom software configuration.

5. The method of claim 4 wherein broadcasting comprises
broadcasting by a satellite.

6. The method of claim 4 wherein broadcasting comprises
broadcasting over the Internet.



