5,892,902

5

waits for a password at step 92. When the intelligent token
10 receives a password in step 94 it validates the password
using whatever built-in validation scheme is present on the
intelligent token 10 (step 96). If the password is invalid then
the intelligent token 10 returns a “NACK?” signal to the local
host computer 30 in step 100, disallows reading of its data
in step 102 and continues to wait for another password. In
some systems a count is kept of the number of times an
invalid password is entered, with only a limited number of
failed attempts allowed before the system shuts down and
requires operator or administrator intervention. If the pass-
word is valid then intelligent token 10 returns an “ACK”
signal to the local host computer 30 in step 98 and allows
reading of the data and its memory and files in step 104.

From the perspective of the local host computer 30, it
waits for the response from the intelligent token 10 in step
66 of FIG. 5 and then bases its processing on the return result
from the intelligent token 10 (step 68). If the password is
invalid, i.e., the intelligent token 10 returns a “NACK”
signal, then the user is once again prompted for a password
and the procedure returns to step 60. If the password is valid,
the user is authenticated to the intelligent token 10 and now
the local host computer 30 attempts to authenticate the card
to the system. It does this by reading a host access code 46
from EEPROM 18 of the intelligent token 10 (step 70). The
host access code is one of the items of data stored on the
intelligent token 10 by the system administrator during
system configuration. In step 72, the host access code from
the intelligent token 10 is compared to the one that is stored
in the local host computer 30. If they are unequal then the
intelligent token 10 is not allowed for this local host com-
puter 30 and the boot process is terminated in step 74.
Preferably, this termination ends the entire boot process—
the boot program does not then try to boot from a disk. If the
check at step 72 finds the codes to be equal then the card is
authenticated to the host and the boot sector information 22
from the EEPROM 18 of the intelligent token 10 is read into
memory 34 of the local host computer 30.

Because of the limited size of the memory on smart cards
today, it is not yet possible to store all the information in files
for an OS the size of e.g.,, MS/DOS on a smart card.
Therefore, the other files will have to be read from a disk or
other storage device. It is, however, still possible to ensure
their integrity by use of integrity information, e.g., check-
sums for the files, stored on the intelligent token 10 (by a
system administrator).

In step 78 the BIOS extension program reads the file
integrity information 44 from the EEPROM 18 of the smart
card 22. Then, for each file whose integrity is required, e.g.,
I10.SYS,, etc, the integrity information for that file is
validated in step 80. In step 82, the validity of the integrity
information is determined. If the OS files are found to be
invalid then an error is reported to the user in step 84. If the
error is considered to be severe then the boot process
terminates (in step 90).

The determination of what constitutes “severe” is made in
advance by the system administrator based on the security
requirements of the system. The system may be arranged
such that no file changes are allowed. Alternatively, the
system may be arranged such that specific files may be
modified, but not others.

If the file integrity information is valid or the error is not
considered severe then the boot sector that was loaded from
the intelligent token 10 in step 76 is executed in step 86. At
this point, the boot process will continue as if the boot sector
had been loaded from a disk, as is traditionally the case.

10

15

20

25

30

35

45

50

55

60

65

6

Turning to FIG. 7, in accordance with a preferred aspect
of the invention, the intelligent token 10 also authenticates
the user to the remote host computer 52. After the user has
been authenticated and the host has been authenticaticated
and securely booted, without further input from the user, the
intelligent token 10 automatically sends a request for access
to the remote host computer 52 (step 120). The remote host
computer 52 responds to the request by sending a randomly
generated challenge to the intelligent token 10 (step 122).
The challenge is stored in the remote host memory for
purpose of verifying the response (step 124). The intelligent
token 10 generates a response to the challenge. Perferably,
the response is based on a secret stored in the intelligent
token 10 which may be known to the user, i.e., a remote
secret (step 126). The remote host computer 52 may or may
not know the remote secret and the remote secret may or
may not be the same as the local secret. The response is then
sent to the remote host computer 52 (step 128) for validation
(step 130). If the remote host computer finds the response to
be valid, access to the remote host is granted to the user (step
132). If the remote host computer 52 finds the response to be
invalid, access to the remote host computer 52 may be
denied (step 134).

As discussed above, the intelligent token 10 stores critical
information such as digital file signatures for system
executables and the user’s cryptographic keys. Comparing
executable computer file signatures of the remote and local
hosts with those stored on the intelligent token 10 provides
a virus detection mechanism which is difficult to defeat. This
approach is consistent with recent trend to validate the file
integrity rather than solely scan for known virus signatures.
In addition, by authenticating both the local host computer
30 and the remote host computer 52, the intelligent token 10
may be employed to facilitate “encrypted communication”
between the local host computer 30 and the remote host
computer 52.

In keeping with the present invention, the intelligent
tokens may be configured and issued by a security officer.
The configuration entails loading critical information onto
the intelligent token 10 including boot sector information 22
as well as digital signatures for boot files stored on the local
host computer 30. At the time of issue, it is necessary to
specify the machine or set of machines that the user to whom
the intelligent token 10 is being issued will be granted access
so that host and remote keys may be loaded. File integrity
information and portions of the host operating system are
also loaded onto the intelligent token 10 at this time. All data
is read protected by the user’s authentication information.
That is, the data cannot be read unless the user password is
presented correctly. The data is write protected by the
security officer authentication. This arrangement prevents
users from inadvertently or deliberately corrupting critical
data on the intelligent token 10.

Intelligent tokens may be issued on a per host, per group,
or per site basis depending on the level of security desired.
Since the secrets shared by the local host, the remote host
and card are configurable on the local host and the remote
host, respectively, it is possible to issue intelligent tokens in
a one-to-one, many-to-one, or many-to-many fashion. A
one-to-one mapping of users to host corresponds to securing
a machine for a single user. Analogously, many-to-one
allows the sharing of a single machine, and many-to-many
allows for the sharing of multiple machines among an
explicit set of users. One-to-many is a possible, but usually
wasteful, mapping of computer resources.

Intelligent tokens themselves may also be made more
secure. Currently, authentication to the intelligent token is



