US 6,915,301 B2

19

objects in the target scene. This also eliminates the effects of
the incremental zoom factor as well as frees up memory used
by objects in the first scene. As the user navigates a world
and interacts with objects using the mouse, notification
events are generated which may trigger behavior. This
behavior is determined by the developer at design time and
consists of the following two optional steps (in order):
setting the value of scene and/or global parameters, and
executing an action.

Wormholes provide control over the values of scene
parameters through a SceneParameters object listed in the
Object Inspector. The SceneParameters object is a child
object of the wormhole and contains a property for each
parameter. If the target scene is not parameterized, the
SceneParameters object may not be displayed in the Object
Inspector. The values contained by the object are used to set
the scene’s properties at runtime.

Three types of parameters drive runtime values in queries
and also monitor and control various user context variables:
global parameters, scene parameters, and query parameters.
Global parameters are exposed in the runtime user as
properties to be set or monitored by the container applica-
tion. Further, built-in global parameters may be used: UserX
(tracks or sets the user’s current horizontal offset from center
in inches); UserY (tracks or sets the user’s current vertical
offset from center in inches); UserZoom (tracks or sets the
user’s current zoom (magnification) level); and UserClass
(contains the name of the user’s profile class).

Query parameters are set by the data source before the
query is executed. Scene parameters may be set by worm-
holes or by event actions. They have the following
attributes:

Name—parameter identifier.

Data type—value type.

Description—available for internal documentation.
Default value—value used if not set by a wormhole’s

SceneParameters child object or by an event action. If no
default value is available, the scene cannot be viewed.
User classes may be used for customizing the behavior or
appearance of the virtual world based on user identity. For
example, a wormhole to sales forecasts may only be visible
to sales personnel and executive staff members, or a hospital
floor plan layout may highlight vacant beds for an admin-
istrator versus cardiac patient beds for a cardiologist. The
default user class in all new worlds is “Anonymous.”

The current user class for a world is stored in the
UserClass global parameter. A property value or event
method can be based on the current user class by use of the
IsUser(class__name) property function which returns a true
or false value depending on whether the UserClass variable
is a member of the class__name user class. Standard boolean
expressions can also contain the UserClass parameter for
direct comparison or display.

User classes can be subclassed in order to refine a class
further. A user subclass of one class can also be a subclass
of another class, thus resulting in a flexible, multiple-
inheritance hierarchy of user classes. When a user class is
deleted by the user and it exists as a subclass of more than
one other user class, the user may be asked whether or not
to delete all occurrences of the user class or just to delete the
selected instance.

Turning now to FIG. 14, an object model of a wormhole
is shown in more detail. A VcScene class 500 defines the
drawing layer (canvas) for all graphical objects displayed in
viewing area. VcScene 500 provides a set of parameters
which may be referenced by the properties of nodes con-

10

15

20

25

30

35

40

45

50

55

60

65

20

tained within the scene. Before the scene can be rendered,
each parameter must be set similar to the way arguments to
a function must be defined before the function is called. A
wormbhole settings node then supplies the calculated settings
for each scene parameter when the scene is viewed through
the wormhole.

The VcScene class 500 has properties that are a member
of a VcParameter class 502 and a list of nodes derived from
a VcDrawingNode base class 504. VcParameter 502 stores
information about a scene parameter, including its name and
data type, while VcDrawingNode 504 is an abstract base
class for all shape and logic nodes which represent the
contents of a scene. VecDrawingNode 504 contains proper-
ties which may be constant or calculated. Calculated prop-
erties may depend on one or more scene parameters.

The VcDrawingNode abstract base class 504 in turn is
inherited by a VcShapeNode 506, which is further inherited
by VcWormholeNode 508. VeShapeNode 506 is abstract
base class for all visible node types. Derived classes of
VcShapeNode 506 implement the specific attributes and
behavior of each type of shape. VeWormholeNode 508 is a
class of shape node in a scene which links to another scene.
It contains a pointer to a settings node for setting the values
of all scene parameters before the scene is rendered.

VcWormholeNode 508 has a m_ sceneParamSettings
property which is a member of the VcWormholeSettingsN-
ode 512 class. VeWormholeSettingsNode 512 is a class of
logic node holding wormhole-specific settings for each
parameter in the connecting scene. These settings are evalu-
ated and passed to the scene before it is rendered in the
wormhole.

VeWormholeSettingsNode 512 is also derived from
VcLogicNode 510, which in turn is derived from the
VcDrawingNode 504. VcLogicNode 510 is an abstract base
class for nodes which defines relationships between shape
nodes and the user.

FIGS. 15 and 16 show exemplary wormhole usages. FIG.
15 shows four wormholes: a portfolio-risk-management
wormhole 700, a market-data wormhole 710, an
investments-under-consideration wormhole 720 and a first-
call-analyst-recommendation wormhole 730. The portfolio-
risk-management wormhole 700, in turn shows three
detailed wormholes 702, 704 and 706 displaying a third
level view of the scene and a chart 708. Each of the three
detailed wormholes 702, 704 and 706 shows financial per-
formance associated with three separate funds or portfolios.
Moreover, views of a given scene arising from one worm-
hole representing one fund or portfolio may be different
from views of the same scene arising from another worm-
hole representing a different fund. Thus, for example, by
drilling down the portfolio risk management wormhole 700,
through one of the funds 702, 704 or 706, and drilling down
to a company in a particular portfolio, context information
is accumulated with every drill-down so that the resulting
view of the company is generated in relationship to the
specific fund or portfolio. The information may include the
quantity of the company’s stock held by the fund, and the
duration of ownership of the company’s stock, among
others.

The scene being presented in each wormhole in FIG. 16
is parameterized in company_ ID in a manner analogous to
an argument to a function. In this case, the scene itself has
an argument that specifies what company the user is looking
at and the scene is accordingly customized. Thus, when the
user looks through any of these wormholes, the scene looks
different because it takes on the identity of the specific
wormbhole being viewed by the user.



