US 6,915,301 B2

1
DYNAMIC OBJECT PROPERTIES

BACKGROUND

The present invention relates to business intelligence tools
for building applications on a database management system
(DBMS).

The advent of powerful, yet economical computers made
possible by advances in processor, memory and data storage
devices has made computers an integral part of modern
companies. An important class of application for these
computers includes a DBMS where information is collected
and organized according to a data model and searched using
queries. The DBMS allows users to perform operations such
as locating, adding, deleting and updating records stored in
the computer without a detailed knowledge of how the
information making up the records actually is stored in the
computer.

One powerful type of DBMS is known as a relational
DBMS where stored information appears to the user as a set
of tables, each of which is termed a relation. In each relation,
the information appears to be arranged in rows and columns,
with columns of data being related to each other by one or
more predetermined functions.

To access particular information in the relational DBMS,
a query compiler converts a user request, typically expressed
in a query language such as a Structured Query Language
(SQL), into a set of operations to be performed on one or
more input relations to yield a solution responsive to the
user’s request. Using the query language provided by the
DBMS, the user may develop application programs which
facilitate retrieval of the data from the DBMS, processing of
the data, and organization of the data into reports.

One issue in developing business intelligence tools is the
type of reports that the tool is to generate. Typically, the tool
generates certain pre-formatted reports using the query
language. Although the query language is easier to use then
conventional programing languages such as Basic or C, the
generation of each new report still requires a certain pro-
gramming expertise and can often take a substantial amount
of time.

SUMMARY

The invention supports objects with dynamic properties
which may be edited using a property entry sheet that
supports dynamic properties. In one aspect, a computer-
implemented property entry sheet for contextually assigning
a property of an object associated with an application
includes an attribute name section adapted to receive an
identification of the property; and a property input section
adapted to receive a functional expression for the property
identified by the attribute name section, the functional
expression being referenceable at run-time as a data value.

Implementations of the property entry sheet may include
one or more of the following. The functional expression may
be a function, an operator, a database column name, a
variable, and/or a constant. The property entry sheet may
also include an attribute name section adapted to receive an
identification of the property and a property input section
adapted to receive a static data value for the property
identified by the attribute name section. Further, the object
has a plurality of properties and wherein the attribute name
section and the property input section of each property form
a name-value pair for each property. The functional expres-
sion may be parsed to generate a function which is stored as

10

15

20

25

30

35

40

45

50

55

60

65

2

a run-time value and byte code associated with the function
may be generated. The function may also be cloned and
stored as a design time value if the function is a constant.
Additionally, an error message may be displayed and an
existing byte code execution image may be invalidated and
new byte code is generated to replace the existing byte code
execution image if the expression is invalid.

In another aspect, a method for assigning a property of an
object associated with an application includes receiving an
expression into a property input section of the property entry
sheet, the expression being referenceable at run-time as a
data value; parsing the expression; generating from the
expression a function; and storing the function as a run-time
value.

Implementations of the invention include the following.
The method may invalidate the object’s byte code execution
image. The method may also determine whether a run-time
display of the object is automatically updated, and if so, the
method may generate and execute the byte code. The
method may also change an attribute of the object by
determining which object property maps to the changed
attribute; creating a constant function representing the
changed attribute value; storing the constant function as a
run-time property value and a design-time property value.
When the object has a byte code execution image, the
method may invalidate the byte code execution image and
may also determine whether a run-time display of the object
is automatically updated, and if so, the byte code is gener-
ated and executed. The method may also clone and store the
function as a design time value if the function is a constant.

In another aspect, a computer-implemented object is
provided with an object state and one or more interfaces
providing access to the object state through a plurality of
attributes, each of the attributes defined as a functional
expression and referenceable at run-time as a data value.

Implementations of the object include the following. The
object’s functional expression includes a function, an
operator, a database column name, a variable, and/or a
constant. Moreover, the attribute may be a static data value.
Each property may have a name-value pair. The object’s
functional expression may be parsed to generate a function
which is stored as a run-time value. The function may be
cloned and stored as a design time value if the function is a
constant. Further, in the event that the expression is invalid,
an error message is displayed, the existing byte code execu-
tion image is invalidated, and new byte code is generated to
replace the existing byte code execution image.

Advantages of the invention include one or more of the
following. The invention is a visual business intelligence
tool for building applications that extend beyond the limi-
tations inherent in conventional forms-based or report-based
applications. Specialized programmers are removed from
the application development process and users are moved
closer to the data so that application development time is
reduced. User interfaces can be created quickly and easily
for information rich databases and for applications such as
data warehousing and decision support.

The invention’s hyperlinks provides context and “look-
ahead” information to applications. This capability supports
several powerful advantages in building data-driven appli-
cations. First, users can see through portals into other views
of their data without losing the context of where they are.
The navigational path taken by a user browsing the appli-
cation can affect the application itself, thus providing
dynamic customization of the application. In addition, con-
text portals simplify the consolidation of diverse data



