5,613,101

1

METHOD AND APPARATUS FOR
DETERMINING AT EXECUTION
COMPATIBILITY AMONG CLIENT AND
PROVIDER COMPONENTS WHERE
PROVIDER VERSION LINKED WITH
CLIENT MAY DIFFER FROM PROVIDER
VERSION AVAILABLE AT EXECUTION

This is a continuation of application Ser. No. 08/058,345
filed May 5, 1993 now abandoned.

LIMITED COPYRIGHT WAIVER

A portion of the disclosure of this patent document
contains material to which the claim of copyright protection
is made. The copyright owner has no objection to the
facsimile reproduction by any person of the patent document
or the patent disclosure, as it appears in the U.S. Patent and
Trademark Office file or records, but reserves all other rights
whatsoever.

FIELD OF THE INVENTION

This invention relates generally to compatibility between
various components of a computer system and, more spe-
cifically, to checking whether interoperating components are
compatible within a specified compatibility range.

BACKGROUND OF THE INVENTION

In a computer system, compatibility between various
components, both hardware and software, of the system may
be important. A new component or an upgrade of an existing
component may be incompatible with other components in
a system, rendering the entire system inaccurate or inopera-
tive. Thus, it is important to have a mechanism for verifying
compatibility between components of a system.

Compatibility plays an important role in a client-provider
relationship wherein a provider supplies services to a client
because it is important that the provider be able to satisfy
expectations of the client. A client-provider relationship may
exist between two computer software programs, two com-
puter hardware components or between a software program
and a hardware component. An example of a client-provider
relationship is a relationship between a shared library (pro-
vider), that is a collection of routines which can be accessed
by other computer programs, and a computer program
(client) which accesses the routines in the library.

Typically, as computer programs are modified, upgraded
or otherwise improved, new versions of the computer pro-
grams are released. To differentiate between different ver-
sions of a computer program, a version number is typically
assigned to each release of the computer program. Usually,
version numbers are assigned such that a newer version of
a computer program has a higher version number than an
earlier version of that computer program. For example, if a
particular version of a computer program has a version
number of 2, then a subsequent version of that computer
program may have a version number greater than 2.

Computer programs are typically written originally in
source code in a computer language such as C or Pascal, or
in an assembly language. To prepare the program for execu-
tion on a computer system, a compiler (or assembler)
converts one or more source code modules into an object
code file. A compiler (or assembler) is specific to the
language used and the computer system on which it will be
executed. A linker routine, which is either a separate pro-

(¥}

10

15

20

30

35

40

50

55

60

65

2

gram or is part of the compiler, combines the object code
files into a single output file, known as an “executable”
object code file. One or more executables are then loaded
together into memory by a loader program, and control is
transferred to a start address to initiate program execution.

Typically, in a client-provider relationship between two
software programs, it is important for compatibility to exist
between the version of a provider such as a shared library
linked to a client and the version of the provider (shared
library) used during execution of the client. During linking
in a client/provider relationship, imports (unresolved exter-
nal symbols in the client) are resolved to exports from the
provider (symbols in the provider that are visible to the
client). At link time, the provider supplies definitions of
symbols (the API) but not the actual implementation of
routines and variables (the code). Thus, the version of the
provider used at link time is called a “definition version”.

When a client is executed, the imports in the client are
connected to the associated exports in the provider. The
connection could be in hardware such as a wire between the
two, or in software such as an operating system, a code
fragment manager, or other shared library or code manager.
At runtime, the provider supplies actual implementation of
routines and variables, i.¢. code. Since the API is supplied at
link time and the code is supplied at runtime, it is important
that the definitions supplied by a provider at link time are
compatible with the implementation of the provider used at
runtime.

In the VMS operating system by Digital Equipment
Corp., Inc,, typically a version of a provider is designed to
be compatible with previous versions, i.e. a version of a
provider is backwards compatible. VMS is a trademark of
Digital Equipment Corporation. Thus, a client can be
executed using a version of the provider which is newer than
the version with which it was built. However, a version of
the provider which is older than the version used to build the
client may not support features available in newer versions
of the provider. Therefore, a client can not be executed using
a version of a provider which is older than the version used
to build the client, because the older provider may not be
compatible with the newer version.

In VMS, as shown in “VAX/VMS Internals and Data
Structures”, version 4.4, Lawrence J. Kenah, Ruth E. Gold-
berg, Simon F. Bate (Digital Press: 1988), section 21.1.1.2,
a provider typically has a revision number comprising a
major number component and a minor component, usually
denoted as “major.minor” or “major/minor”. VAX is a
trademark of Digital Equipment Corporation. When a new
revision of a provider contains substantial changes from a
prior instance of the provider, then the major number is
incremented. However, if the changes are only minor
changes, then usually only the minor number is incremented.
At link time, the revision number of the provider supplying
the definitions is stored in the executable object code. At
execution time, the major number of the stored revision
number in the client is compared to the major number in the
revision code of the provider being accessed to implement
the client. If the major number of the revision of the
implementation provider is less than the major number of
the revision number stored in the client’s executable object
code, then the client and provider are considered incompat-
ible, regardless of whether the two are in fact incompatible.

For example, if the client is linked with a provider having
a revision number of 7.1, then it would be considered
incompatible with a provider having a major number less
than 7 such as 6.5, 5.0, etc. . . ., but it would be considered



