4,068,300

19

results since the logical instruction is not fixed, i.e.,
bound, until execution time and at that time incorpo-
rates the data field descriptors which account for the
encoding differences.

Once the control store unit has determined that the
data types are compatible and that a transformation may
occur, step 432 of the flow chart is executed. Step 432 is
a general purpose purely logical instruction which may
be an add, subtract, multiply, divide, move, compare
and/or hash operation. This logical instruction is per-
formed on the total information identified by the in-
struction, i.e., each field has a descriptor and there may
be one to three fields depending on the type of instruc-
tion. When the instruction is executed, the data field
descriptors automatically account for the variations in
the data fields. Previously, this function had to be per-
formed by a specialized subroutine written for each
individual data type.

Upon completion of the instruction in step 432, the
next instruction in the instruction fetch unit 308 is se-
quenced. This completes operation on the specific oper-
and of the data base file.

The automatic accounting feature utilized by the
logical instruction includes a translation to compatible
formats of the data fields. This is easily accomplished
through programmable read only memories (PROMS).
In addition, these PROMS are able to be utilized such
that the results are returned to the original representa-
tions. For particularized examples of the transforma-
tions of the data fields in accordance with the data field
descriptors, reference should be made to the co-pending
applications of Charles W. Bachman previously cited.

For ease of description, the above instruction has
been shown to be utilized for a data base file and an
application program. However, there are at least five
applications which presently may utilize data field de-
scriptors. The source field and/or destination field may
be a data file from a communication facility, a data base
of a user or the internal storage of the data processor
itself. Thus, the five applications provided are (1) from
a communication facility to the data processor, (2) from
a data base to the data processor, (3) from the data
processor to the data processor, (4) from the data pro-
cessor to the communications facility and (5) from the
data processor to the data base.

Although a data field descriptor finalizes the informa-
tion that the instruction operates on, the actual instruc-
tion has great versatility. Thus, the instruction operates
differently on the same data fields if another or different
data field descriptor is accessed. In essence, this would
be accomplished by changing the address syllable and
offset in the instruction itself thus referencing a different
data descriptor which through its displacement may
reference the same or different data fields. In addition,
the instruction can operate on different data fields with
the same data field descriptors. This would be accom-
plished by other instructions (not shown) determining
that more records are to be processed. The reference to
the new operands would be made by changing the dis-
placement in the base register. The next absolute ad-
dress development would then provide the new data
since it provides a different address. As a result, the
same instruction would operate on a different data field.
This flexibility of the instruction allowing different
forms to be utilized is a primary feature in the invention
since the same functionality provided by the instruction
is able to be used with a great variety of differently
encoded data fields thus obviating the limitations de-

20

25

30

35

45

50

55

60

65

20

scribed earlier. Moreover, by using data field descrip-
tors not only may the same instruction be constantly
used, but the data field descriptor may be changed to a
currently more desirable form, thus enabling the evolu-
tion of the data base structure. This results since the
data field descriptor which addresses and manipulates
the data field is part of the control mechanism of the
data processor and may be rewritten at any time to
describe the new form of the data fields.

Moreover, the instruction can also be used in a hybrid
situation wherein only one portion of the logical in-
struction uses the data field descriptor. As was ex-
plained earlier, the prior art in preparing the instruction
required information concerning the attributes of the
data fields. With this information, the instruction which
could carry out the intended operation was then pro-
vided. Thus, in creating the instruction, the features of
the data field were provided. A logical instruction uti-
lizing a data field descriptor may be provided in combi-
nation with an instruction of this type. For example, the
source data field and its attributes may be provided in
the instruction whereas the destination field may be the
logical portion of the instruction previously described
and incorporating the data field descriptor. In similar
manner, the source field may be the logical portion of
the instruction and the destination field may have its
features provided by the instruction. The third situation
is the one described previously wherein both the source
and destination fields are described by a logical instruc-
tion incorporating the data field descriptors. Thus, the
limitation of preparing instructions based on the form of
the data is effectively removed. Even if the form of the
data field changes, the logical instruction and hence
application program is not obsoleted since the instruc-
tion functions regardless of the data type or encoding
given. This results since the data field descriptor is
changed for the new data and the instruction does not
operate on the data field descriptor until execution time.
Thus, the nature of the data itself is, in every case, re-
vealed only at execution time allowing the changes of
the data fields through time to be made without having
to reflect in the program the changes made in the data
files. Economy is thus provided in not having to rewrite
or retest the program. In the hybrid situation just de-
scribed, the versatility is limited since the above
changes would have to be made for the part of the
instruction not dealing with the data field descriptor.

Moreover, the versatility of the instruction is en-
hanced by the ability to successively access data fields
and perform its intended operation. For example, if it is
required to move ten data fields, the same move instruc-
tion may be accessed for each field. Thus, by other
means (not shown) the offset of the address syliable
would be changed. However, the logical move instruc-
tion would account for the different encoding schemes
at execution time via the data field descriptors accessed.
Thus the ability to change the encoding schemes from
execution to execution is another primary feature recog-
nized by this invention. The well known loop used for
moving data fields in the prior art would be applicable
for moving successive fields but instead of requiring
different move instructions based on each data field
only one move instruction is necessary.

What is claimed is:

1. An apparatus for processing data fields having a
plurality of different data structures, said apparatus
comprising:



